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1. Introduction

The exact partition function [1] of two dimensional Yang Mills (2DYM) for SU(N) gauge

group on a Riemann surface of genus G and area A is given by

ZG,A =
∑

R

(DimR)2−2Ge−g2
YM

AC2(R) (1.1)
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Of special interest to us is the zero area limit

ZG =
∑

R

(DimR)2−2G (1.2)

R runs over irreducible representations of SU(N) and Dim(R) is the dimension of the repre-

sentation. The results for manifolds with boundary are also known. Our main interest will

be in the situation where χ = 2− 2G−B ≤ −1. The string theory interpretation of the 1
N

expansion was developed in [2]. For earlier work on stringy aspects of 2DYM, see [3]. For a

review of the exact partition function, its 1
N

expansion, and the string theory interpretation

see [4]. Σ(G,B) in this paper denotes a Riemann surface of genus G with B boundaries.

The large N expansion of these partition functions is described in terms of a coupling

of a chiral partition function Z+ with an anti-chiral partition function Z− [2]. The chiral

parition function is obtained by replacing
∑

R →
∑

n

∑

R⊢n

Z+
G =

∞
∑

n=0

∑

R⊢n

(DimR)2−2G (1.3)

R now runs over Young diagrams with n boxes. Using Schur-Weyl duality, which relates

the actions of U(N) (or SU(N)) and Sn in V ⊗n, this can be manipulated to give

Z+
G =

∑

n

Nn(2−2G)

n!

∑

s1,t1···sG,tG∈Sn

δn

(

Ω2−2G
n

G
∏

i=1

sitis
−1
i t−1

i

)

(1.4)

where the “chiral Ω factor” Ωn is an element in the group algebra C(Sn)

Ωn =
∑

σ∈Sn

NCσ−n σ (1.5)

The δn is defined over Sn by

δn(σ) = 1 if σ = 1 and 0 otherwise (1.6)

and extended over the group algebra C(Sn) by linearity. The expansion (1.4) can be used

to show that each order in the ( 1
N

)2g−2 expansion of Z+ is a sum over equivalence classes

of branched covers from a worldsheet Riemann surface of genus g to the target ΣG, so that

we have a topological string theory with gs = 1
N

. It is useful to define b(σ) = n−Cσ which

is the branching number of the permutation. The Riemann-Hurwitz formula

2g − 2 = n(2G − 2) +
∑

i

b(σi) (1.7)

gives the Euler character of the worldsheet for a branched cover of ΣG with branchings i

described by σi. So we see that the power N−b(σ) appearing in the Ω factor is compatible

with the interpretation of Ωn in terms of branch points with gs = 1
N

. The Ωn can be

written as 1 +
∑′ σN−b(σ) and we have the expansion

Ω2−2G
n =

∞
∑

L=0

d(2 − 2G,L)

′
∑

σ1 ,...σL

σ1σ2 · · · σL N−b(σ1)−b(σ2)··· − b(σL) (1.8)
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where d(2 − 2G,L) is a binomial coefficient. The L = 0 term is defined as 1. This

factor d(2 − 2G,L), related to the exponent 2 − 2G in Ω2−2G
n , is the Euler character of

the configuration space of L indistiguishable points on ΣG. Along with the structure

of Hurwitz spaces as discrete fibrations over these configuration spaces, (1.4) and (1.8)

are used to prove that the Z+
G is a generating function of (orbifold) Euler characters of

Hurwitz spaces of holomorphic maps from Σg to ΣG. This is explained in section 5 of [5]

and reviewed in [4].

The complete expansion of the ZG takes a similar form

ZG =
∞
∑

m,n=0

N (m+n)(2−2G)

m!n!

∑

R⊢m,S⊢n

∑

s1,t1···sG,tG∈Sm×Sn

δm,n

(

Ω2−2G
m,n

G
∏

i=1

sitis
−1
i t−1

i

)

(1.9)

The δm,n is the delta function defined as in (1.6) but for C(Sm×Sn). The “coupled Omega

factor” Ωm,n is much more intricate than the “chiral Omega factor” Ωn but

Ωm,n = ΩmΩn

(

1 + O

(

1

N

))

(1.10)

The detailed formula and its interpretation in terms of wordsheet geometry is reviewed

in section 4. The complete expansion is interpreted in terms of maps from worldsheets

which have double points connecting two components which have branchings described

by permutations in Sm and Sn respectively. The m sheets map holomorphically to the

target and the n sheets map anti-holomorphically [2]. More precisely ZG generates Euler

characters of the appropriate moduli space of maps (see section 10 of [5]).

Recent work [6] has used, in the context of branes and anti-branes in the AdS dual

of 4D super-Yang Mills, the Schur Weyl-duality between U(N) acting on V ⊗m ⊗ V̄ ⊗n

and the Brauer algebra B(m,n). This algebra contains C(Sm × Sn) as a sub-algebra, but

also has additional generators corresponding to contractions between V and V̄ . Another

important property of B(m,n) is that there is a map Σ : B(m,n) → C(Sm+n). This map

is not a homomorphism but maps the natural bilinear symmetric form on B(m,n) to a

bilinear symmetric form on the group algebra C(Sm+n), which can be calculated in terms

of Ωm+n. The inversion of the form, which is useful in constructing projection operators

in the Brauer algebra [7], is conveniently done using Ω−1
m+n. This can be used to derive a

formula for DimRS̄ in terms of Sm+n data [6]. In this paper we will develop this further

to derive a simple relation between Ω−1
m,n and Ω−1

m+n. We then describe the implications for

the string interpretation of the 1
N

expansion of 2DYM.

Section 2 derives the relation between Ω−1
m,n and Ω−1

m+n. In section 3 we use it to rewrite

the complete 1
N

expansion of 2DYM for Σ(G = 2). In section 4 we give the geometrical

interpretation. In section 5 we show that the same discussion carries over for Σ(G). The

complete expansion (1.9) can be interpreted in terms of holomorphic maps. As discussed

in section 4, for the case Σ(G = 1, B = 1) this is a straightforward consequence of the new

formula for Ω−1
m,n. In general it requires a choice of cutting of Σ(G) into components of

Euler character −1 i.e 3-holed spheres or 1-holed tori.

– 3 –
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2. New dimension formula and Ω factors

In [6], we obtained a new formula for the coupled dimension,

1

DimRS̄
=

1

d2
Rd2

S

(

m!n!

(m + n)!

)2
∑

T

d2
T

DimT
g(R,S;T ) (2.1)

We rewrite it using the formula for the Littlewood-Richardson (LR) coefficient

g(R,S;T ) =
1

dRdSDimT
trm+n((pR ◦ pS)pT ) (2.2)

pR is a projection operator in C(Sm) (see appendix A), pS is in C(Sn) and pT in C(Sm+n).

We also use

trm+n(σ) = Nm+nδm+n(Ωm+nσ) (2.3)

and
1

(DimT )2
=

(

(m + n)!

Nm+ndT

)2 χT (Ω−2
m+n)

dT
(2.4)

Then we have

d2
T

DimT
g(R,S;T ) =

d2
T

dRdS

1

(DimT )2
trm+n((pR ◦ pS)pT )

=
1

dRdS

(

(m + n)!

Nm+n

)2 χT (Ω−2
m+n)

dT
trm+n((pR ◦ pS)pT )

=
1

dRdS

(

(m + n)!

Nm+n

)2

trm+n(Ω−2
m+n(pR ◦ pS)pT )

=
1

dRdS

(

(m + n)!

Nm+n

)2

Nm+nδm+n(Ω−1
m+n(pR ◦ pS)pT ) (2.5)

Therefore the formula (2.1) can be brought to the form

1

DimRS̄
=
∑

T

1

d3
Rd3

S

m!2n!2

Nm+n
δm+n(Ω−1

m+n(pR ◦ pS)pT )

=
1

d3
Rd3

S

m!2n!2

Nm+n
δm+n(Ω−1

m+n(pR ◦ pS)) (2.6)

where we have used
∑

T pT = 1. This can be written as

1

DimRS̄
=
∑

σ∈Sm

∑

τ∈Sn

m!n!

d2
Rd2

SNm+n
χR⊗S(σ−1 ⊗ τ−1)δm+n((σ ⊗ τ)Ω−1

m+n)

=
m!n!

d2
Rd2

SNm+n
χR⊗S(Ω−1

m+n|Sm×Sn) (2.7)

Ω−1
m+n|Sm×Sn is calculated by expanding Ω−1

m+n as an element of the group algebra of Sm+n,

and then restricting to the subgroup Sm × Sn. Comparing with the Gross-Taylor formula

in terms of the coupled-Omega factor we find that

Ω−1
m,n = Ω−1

m+n|Sm×Sn (2.8)
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α −1 α 1 2

Figure 1: Genus two from gluing two copies of Σ(G = 1, B = 1)

As a simple example, we have

Ω−1
2 =

(

1 −
1

N2

)−1

−
σ

N

(

1 −
1

N2

)−1

Ω−1
2 |S1×S1

=

(

1 −
1

N2

)−1

= Ω−1
1,1 (2.9)

In appendix C, other examples involving m + n = 3, 4 are illustrated. An important

point is that the relation (2.8) exists in the above simple form for Ω−1
m,n and not Ωm,n.

We cannot write Ωm,n as a projection of Ωm+n. We can get Ωm,n from Sm+n data by

using (2.8) and then inverting after the projection. This is related to the fact that the new

geometrical interpretation of the complete 1
N

expansion which we propose, works best for

χG,B = 2 − 2G − B ≤ −1.

3. Genus 2 target

3.1 Genus 2: partition function in terms of Sm+n

We will prove that the complete 1/N expansion of ZG=2 is given by

ZG=2 =
∑

m,n

∑

α1∈Sm×Sn

N−m−n

m!n!
δm+n(Ω−1

m+nΠ1α1)

×
∑

α2∈Sm×Sn

N−m−n

m!n!
δm+n(Ω−1

m+nΠ1α
−1
2 )

×
∑

γ∈Sm×Sn

δm+n(α−1
1 γα2γ

−1) (3.1)

Here Π1 =
∑

s,t∈Sm×Sn
sts−1t−1. The above formula corresponds to gluing two 1-holed

tori to get a genus 2-surface (see figure 1). Boundary partition functions with symmetric

group data and their gluing is reviewed in appendix D.
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We will also show

ZG=2 =
∑

m,n

∑

α1,α2,α3∈Sm×Sn

N−m−n

m!n!
δm+n(Ω−1

m+nα1α2α3)

×
∑

β1,β2,β3∈Sm×Sn

N−m−n

m!n!
δm+n(Ω−1

m+nβ1β2β3)

×
∑

γ1,γ2,γ3∈Sm×Sn

3
∏

i=1

δm+n(α−1
i γ−1

i β−1
i γi) (3.2)

This corresponds to the gluing of two 3-holed spheres to get the genus 2 curve as in figure 2.

3.2 Derivations

Let us derive (3.1). We recall from [2] that

ZG=2 =
∑

m,n

N−2(m+n)

m!n!
δm,n(Ω−2

m,n Π2
1) (3.3)

We will use the abbreviation Sm,n ≡ Sm×Sn. The delta function is over the group algebra

of Sm,n. We can write this as

ZG=2 =
∑

m,n

N−2(m+n)

m!n!
δm,n(Ω−1

m,n Π1 Ω−1
m,n Π1)

=
∑

m,n

∑

α∈Sm,n

N−2(m+n)

m!n!
δm,n(Ω−1

m,n Π1 α) δm,n(Ω−1
m,n Π1 α−1)

=
∑

m,n

∑

α1,σ2∈Sm,n

N−2(m+n)

m!n!
δm,n(Ω−1

m,n Π1 α1) δm,n(Ω−1
m,n Π1 α−1

2 ) δm,n(α−1
1 α2)

=
∑

m,n

∑

α1,σ2,γ∈Sm,n

N−2(m+n)

(m!n!)2
δm,n(Ω−1

m,n Π1 γα1γ
−1)δm,n(Ω−1

m,n Π1 α−1
2 )δm,n(α−1

1 α2)

=
∑

m,n

∑

α1,σ2,γ∈Sm,n

N−2(m+n)

(m!n!)2
δm,n(Ω−1

m,n Π1 α1)δm,n(Ω−1
m,n Π1 α−1

2 )δm,n(γα−1
1 γ−1α2)

=
∑

m,n

∑

α1∈Sm,n

N−(m+n)

m!n!
δm,n(Ω−1

m,n Π1 α1)

×
∑

α2∈Sm,n

N−(m+n)

m!n!
δm,n(Ω−1

m,n Π1 α−1
2 )

×
∑

γ∈Sm,n

δm,n(γα−1
1 γ−1α2) (3.4)

The steps are each trivial. To get to the fourth equality we have used the fact that the

Ω−1
m,n Π1 is central in Sm,n. Now we will use a simple rewriting of δm,n(Ω−1

m,nB) where

B ∈ C(Sm × Sn). We know (2.8) that Ω−1
m,n can be written as a projection of Ω−1

m+n ∈

C(Sm+n). But when we have δm,n(Ω−1
m,nB) with B ∈ C(Sm × Sn), then the delta function

can be rewritten as δm,n(Ω−1
m,nB) = δm+n(Ω−1

m+nB). The projection is being performed by

– 6 –
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the δm+n on the group algbera C(Sm+n) and the fact that B belongs to the subalgebra.

Using this observation we have

ZG=2 =
∑

m,n

∑

α1∈Sm,n

N−(m+n)

m!n!
δm+n(Ω−1

m+n Π1 α1)

×
∑

α2∈Sm,n

N−(m+n)

m!n!
δm+n(Ω−1

m+n Π1 α−1
2 )

×
∑

γ∈Sm,n

δm+n(γα−1
1 γ−1α2) (3.5)

An important point is that the replacement δm,n → δm+n; Ω−2
m,n → Ω−2

m+n cannot be done

directly in (3.3) because Ω−2
m+n involves multiplying Ω−1

m+n · Ω−1
m+n with both being viewed

as elements in C(Sm+n), whereas Ω−1
m,n · Ω−1

m,n is a multiplication in C(Sm × Sn).

We will now demonstrate (3.2). Rewriting (3.3) by expanding Π1

ZG=2 =
∑

s1,t1,s2,t2∈Sm,n

N−2m−2n

m!n!
δm,n(Ω−2

m,n s1t1s
−1
1 t−1

1 s2t2s
−1
2 t−1

2 )

=
∑

s1,t1,s2,t2∈Sm,n

N−2m−2n

m!n!
δm,n(Ω−2

m,n s1s2 t1s
−1
1 t−1

1 t2s
−1
2 t−1

2 )

=
∑

s1,t1,s2,t2,s3∈Sm,n

N−2m−2n

m!n!
δm,n(Ω−1

m,n s1s2s3) δm,n(Ω−1
m,n t1s

−1
1 t−1

1 t2s
−1
2 t−1

2 s−1
3 )

=
∑

si,ti,ui∈Sm,n

N−2m−2n

m!n!
δm,n(Ω−1

m+n s1s2s3) δm,n(Ω−1
m+n u1u2u3)

δm,n(t1s
−1
1 t−1

1 u−1
1 ) δm,n(t2s

−1
2 t−1

2 u−1
2 ) δm,n(u−1

3 s−1
3 )

=
∑

si,ti,ui∈Sm,n

N−m−n

m!n!
δm,n(Ω−1

m+ns1s2s3)
N−m−n

m!n!
δm,n(Ω−1

m+nu1u2u3)

δm,n(t1s
−1
1 t−1

1 u−1
1 )δm,n(t2s

−1
2 t−1

2 u−1
2 )δm,n(t3s3t

−1
3 u−1

3 ) (3.6)

To get to the last equality, we have inserted 1 = 1
m!n!

∑

t3∈Sm,n
t3t

−1
3 into the inside of the

last δm,n and redefined some variables. After a renaming si → αi, ui → βi, ti → γi, this

proves (3.2).

3.3 Chiral form of complete 1
N

expansion for G = 2

The chiral expansion of the partition function for genus 2 can be written in the same form

as either (3.1) or (3.2). We use the label M for degree, and write for the chiral theory the

form corresponding to the gluing of figure 2.

Z+
G=2 =

∑

M

∑

αi∈SM

N−M

M !
δM (Ω−1

M α1α2α3)

×
∑

βi∈SM

N−M

M !
δM (Ω−1

M β−1
1 β−1

2 β−1
3 )

×
∑

γ1,γ2,γ3∈SM

3
∏

i=1

δM (α−1
i γ−1

i βiγi) (3.7)

– 7 –
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Figure 2: Genus two from gluing two copies of Σ(G = 0, B = 3)

To emphasize the similarity between (3.2) and (3.7) we can rewrite (3.2) as

ZG=2 =
∑

M

∑

αi∈SM

N−M

M !
δM (Ω−1

M α1α2α3)

×
∑

βi∈SM

N−M

M !
δM (Ω−1

M β−1
1 β−1

2 β−1
3 )

×
∑

γ1,γ2,γ3∈SM

3
∏

i=1

δM (α−1
i γ−1

i βiγi)

×
∑

H

(

M !

|H|

)2 3
∏

i=1

δM (αi1H)δM (βi1H)δM (γi1H) (3.8)

where there is an additional sum over sub-groups H = Sm × Sn in SM ≡ Sm+n , with

M ≥ m,n ≥ 0. We have also defined 1H ≡
∑

α∈H α, the projector onto the symmetric

irrep of H. The delta functions in the last line ensures that the permutations αi, βi, γi are

in the subgroup H.

4. Two holomorphic descriptions of the non-chiral expansion

4.1 The Gross-Taylor coupled expansion: worldsheets, nodes and collision of

branch points

The coupled Omega factor has an expansion [2]

Ωm,n =
∑

σ+∈Sm

∑

σ−∈Sn

(σ+ ⊗ σ−)Pσ+σ−NC
σ++C

σ−
−(m+n)

Pσ+σ− =
∏

j=1

min(kj ,lj)
∑

m

Pkj ,lj(m)
1

N2m

Pkj ,lj(m) =

(

kj

m

)(

lj
m

)

m!(−j)m (4.1)

In the above, j runs over the cycle lengths of σ+, σ−. kj is the number of cycles of length

j in σ+ ; lj is the number of cycles of length j in σ−.

– 8 –
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The coupled Ωm,n factor contains a sum of permutations weighted by polynomials in
1
N

. In the chiral ΩM factor, each permutation σ is weighted just by N−b(σ) where b(σ) is the

branching number of the permutation. In the case of the coupled Ωm,n factor σ ∈ Sm×Sn,

written as σ+ ⊗ σ− to emphasize the product form, has a leading coefficient which is just

the sum of branching numbers of the σ+ and σ−. The subleading terms have an elegant

combinatoric interpretation discovered in [2]. They can be interpreted in terms of double

points on the worldsheet, joining ramification points. The rule is that the double points

can only connect ramification points of the same order, which can be zero. Each such

double point is accompanied by a weight of (−j)
N2 where j is the order of the ramification.

The factor of 1
N2 accounts precisely for the change in Euler character of the worldsheet

upon introduction of such a double point. A local model of the double point and the map

was given in [5]. The branching described by σ+ ∈ Sm is taken to be that of a holomorphic

map, and the branching described by σ− is anti-holomorphic.

It is instructive to consider an orientation reversal on σ− so that both σ+, σ− describe

holomorphic maps. Then we can ask how the double points of the coupled expansion arise

from the collision of branch points. For example consider a double cover over the sphere

which is branched with two branch points each corresponding to the permutation (12).

After collision the monodromy is just the identity permutation, with branching number

zero. The Euler character of the worldsheet has not changed. This is consistent with a

double point arising from the collision, which joins two points of trivial ramification. If

we take a collision of branch points described by (12 · · · j j + 1) and (j j + 1 · · · 2j), the

resulting permutation is (1 · · · j)(j +1 · · · 2j) with branching number two less than the sum

of branching numbers of the collising permutations, so a double point has been created.

So all the double points of the type arising in the coupled expansion can occur from the

collision of branch points, i.e at the boundaries of Hurwitz space. The most general collision

of branch points can produce more complicated singularities, which do not all occur in the

coupled expansion. For further comments on the collision of branch points and its relevance

to the the identity (2.8) see the end of appendix C.

By generalizing the argument of the chiral sector to the coupled case (section 10 of [5])

it can be shown that the complete 1
N

expansion of 2DYM computes Euler characters of holo-

anti-holo maps, or after the orientation reversal just holomorphic maps, from worldsheets

that can have double points according to the rules described above. This was called the

moduli space of “degenerating coupled covers” in [5].

4.2 New holomorphic interpretation in the case Σ(G = 1, B = 1)

The simplest case where we can see the new interpretation based on (2.8) is for 2DYM

on Σ(G = 1, B = 1). In this case we have boundary observables specified by choosing an

integer n and a conjugacy class T of Sm ×Sn (see appendix D for a quick review and [4, 8]

for more details)

Z(G = 1, B = 1;T ) =
∑

α∈T

∑

s,t∈Sm×Sn

N−m−n

m!n!
δm,n(Ω−1

m,nsts−1t−1α) (4.2)
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This partition function can be re-written as

Z(G = 1, B = 1;T ) =
∑

α∈T

∑

s,t∈Sm×Sn

N−m−n

m!n!
δm+n(Ω−1

m+nsts−1t−1α) (4.3)

The first expression can be expanded and interpreted as an Euler character of the

moduli space of “degenerating coupled covers” [5]. The second expression can be expanded

Z(G = 1, B = 1;T ) =
∑

α∈T

∑

s,t∈Sm×Sn

N−m−n

m!n!

∞
∑

L=0

d(−1, L)

×
′
∑

σ1···σL∈Sm+n

N−b(σ1)−b(σ2)−···−b(σL)δm+n(σ1 · · · σLsts−1t−1α) (4.4)

Since the permutations σ1 · · · σL are in Sm+n the corresponding branch points can permute

any of the m + n sheets of the cover among each other. The power of N is consistent

with these branching numbers. So these are holomorphic maps of degree m + n. The

terms with fixed L can be interpreted in terms of a moduli space of holomorphic maps

to Σ(G = 1, B = 1) with L branch points with boundary permutation in the conjugacy

class T . The cycle lengths of T correspond to winding numbers of strings at the boundary.

The binomial factor d(−1, L) = (−1)L is the Euler character of the configuration space

of L indistinguishable points on Σ(G = 1, B = 1). Hence the Z(G = 1, B = 1;T ) is a

generating function for the Euler character of the space of holomorphic maps with fixed

string winding numbers at the boundary.

4.3 Holomorphic maps, sums over H-monodromies along markings: No singular

worldsheets

We now describe the holomorphic interpretation for closed target spaces, for simplicity in

the case of Σ(G = 2). It will be clear that the same ideas generalise to closed Riemann

surfaces of any genus G.

The chiral expansion is a sum over M , which corresponds to the degree of the map

from worldsheet Σg to the target Σ(G). The chiral partition function Z+
G=2 can be derived

by gluing partition functions on one-holed tori or 3-holed spheres, e.g. (3.7). The final

expression is independent of the choice of decomposition into χ = −1 components as is

manifest in (1.4). For each degree, the data at each boundary required to specify the

boundary partition function is a conjugacy class in SM . In the gluing procedure, we sum

over all conjugacy classes in SM and subsequently sum over M .

In the formulae developed above (3.1) (3.2), for the complete 1
N

expansion, the gluing

procedure is generalised. It involves summing over subgroups H = Sm × Sn of SM=m+n.

For each choice of H, we consider boundary partition functions depending on a conjugacy

class in H, and the s, t monodromies in the subgroup as well. The boundary permutations

and the s, t monodromies are summed over H. The branch points coming from expanding

Ω−1
m+n however are general permutations in SM . The branch points can permute any of the
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M sheets, so these are holomorphic maps of degree M . For example, from (3.1) we have

ZG=2 =
∑

m,n

∑

α1∈Sm×Sn

N−m−n

m!n!

∞
∑

L1=0

′
∑

σ1,...,σL1
∈Sm+n

d(−1, L1) N−b(σ1)−b(σ2)···−b(σL1
)

×
∑

α2∈Sm×Sn

N−m−n

m!n!

∞
∑

L2=0

′
∑

τ1,τ2,...τL2
∈Sm+n

d(−1, L2) N−b(τ1)−b(τ2)···−b(τL2
)

×
∑

s,t∈Sm×Sn

δm+n(σ1σ2 · · · σL1
sts−1t−1α1)

×
∑

s̃,t̃∈Sm×Sn

δm+n(τ1τ2 · · · τL2
s̃t̃s̃−1t̃−1α−1

2 )

×
∑

γ∈Sm×Sn

δm+n(α−1
1 γα2γ

−1) (4.5)

The binomial coefficients d(−1, L1) = (−1)L1 and d(−1, L2) = (−1)L2 in the expansion of

the Ω−1
m+n factors are Euler characters the configuration spaces of points on each χ = −1

component (see [5] for a quick review of these Euler characters). Hence we can interpret in

terms of the Euler character of a moduli space of holomorphic maps where the branch points

can move over these components. There are no singular wordsheets in this interpretation.

All the branch points coming from expanding the Ω factors are weighted with powers of N

according to their branching number.

The complete partition function can be written in the suggestive form of an insertion,

involving an additional sum over subgroups H of SM , in the chiral partition function (3.8).

In the next section we will find the higher genus analogs of the formulae in section 3.

The possible implications of (3.8) in terms of observables in a topological string theory of

holomorphic maps will be discussed in the general genus case in section 5.

To summarize, the complete 1
N

expansion of 2DYM as given in (1.9) can be interpreted

as a generating function of Euler characters of moduli spaces of holomorphic maps in two

different ways. In one interpretation [2, 4], based on the formula for Ω−1
m,n in [2], there are

worldsheets with double points and branch points which can wander all over Σ(G). The

standard interpretation involves holomorphic and anti-holomorphic maps on different com-

ponents joined at double points, but we can get a corresponding holomorphic moduli space

by an orientation reversal on the anti-holomorphic component. A new interpretation using

Ω−1
m+n follows directly from unravelling the consequences of (2.8). In this interpretation

there are no worldsheet double points and the branch points are free to move on the χ = −1

components of a decomposition of Σ(G) fixed by choosing some markings on the Riemann

surface. By generalising the way we lift the gluing together of spacetime Σ(G) along the

markings to the gluing of spaces of maps from worldsheets to Σ(G), we are able to get rid

of the worldsheet double points. Since the expressions (3.1) (3.2) are derived from (1.9),

it is clear that the generalized gluing is compatible with a well-defined partition function

on Σ(G), independent of the choice of markings which separate Σ(G) into components of

χ = −1. The equivalence of different descriptions which give rise to the same expansion

in the string coupling gs = 1
N

is reminiscent of T -duality. A natural question is whether

– 11 –
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Figure 3: Genus G from gluing G copies of Σ(G = 1, B = 1) and G− 2 copies of Σ(G = 0, B = 3)

the equivalence of Euler characters of the two different moduli spaces described above is a

duality that can be studied by physical methods from the worldsheet point of view.1

Given the crucial role played by the generalised gluing, it would be interesting to

investigate the generalisation arising in (3.8), involving a summation over subgroups H of

a group G, in the context of general two dimensional topological field theories of a finite

group G. While G = SM is of special interest in the large N expansion of 2DYM due to

the Hurwitz connection between branched covers and SM , other finite groups might be of

interest in connection with the topological sector of CFTs with orbifold target spaces.

5. General genus

5.1 ZG in terms of δm+n

The following fomula is derived in appendix B.1

ZG =
∑

m,n

∑

αiα̃i,βi,β̃i∈Sm×Sn

G
∏

i=1

N−m−n

m!n!
δm+n(Ω−1

m+nΠ1α
−1
i )

×
N−m−n

m!n!
δm+n(Ω−1

m+nα̃1α̃2β1)
N−m−n

m!n!
δm+n(Ω−1

m+nβ̃−1
1 α̃3β2)

×
N−m−n

m!n!
δm+n(Ω−1

m+nβ̃−1
2 α̃4β3) · · ·

N−m−n

m!n!
δm+n(Ω−1

m+nβ̃−1
G−3α̃G−1α̃G)

×
∑

γi,ǫi∈Sm×Sn

G
∏

i=1

δm+n(αiγiα̃
−1
i γ−1

i )

G−3
∏

i=1

δm+n(β−1
i ǫiβ̃iǫ

−1
i ) (5.1)

The corresponding choice of markings that separate Σ(G) into χ = −1 components is shown

in figure 3. We have G copies of 1-holed tori glued to 3-holed spheres by permutations αi.

There are G − 2 copies of the 3-holed spheres.

1We thank R. de Mello Koch for a discussion on this point.
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Another way to write the partition function employs the cutting of genus G into 2G−2

copies of Σ(G = 0, B = 3) as in figure 4.

ZG =
∑

m,n

∑

si,ti,ui,vi,wi,ṽi,w̃i,γi,ǫi∈Sm×Sn

N−(m+n)

m!n!
δm+n(Ω−1

m+ns1s2v1)
N−(m+n)

m!n!
δm+n(Ω−1

m+nu1u2w1)

N−(m+n)

m!n!
δm+n(Ω−1

m+nṽ−1
1 s3v2)

N−(m+n)

m!n!
δm+n(Ω−1

m+nw̃−1
1 u3w2)

...
...

N−(m+n)

m!n!
δm+n(Ω−1

m+nṽ−1
G−3sG−1vG−2)

N−(m+n)

m!n!
δm+n(Ω−1w̃−1

G−3sG−1wG−2)

N−(m+n)

m!n!
δm+n(Ω−1

m+nṽ−1
G−2sGsG+1)

N−(m+n)

m!n!
δm+n(Ω−1

m+nw̃−1
G−2uGuG+1)

G+1
∏

i=1

δm+n(uitis
−1
i t−1

i )
G−2
∏

i=1

δm+n(v−1
i γiṽiγ

−1
i )

G−2
∏

i=1

δm+n(w−1
i ǫiw̃iǫ

−1
i ) (5.2)

We have introduced the gluing permutations γi, ǫi so that we get, for each component

of Euler character −1 a boundary partition function with standard normalisation. We can

therefore write

ZG =
∑

m,n

∑

si,ti,ui,vi,wi,ṽi,w̃i,γi,ǫi∈Sm×Sn

Z(G = 0, B = 3; s1s2v1)Z(G = 0, B = 3;u1u2w1)

Z(G = 0, B = 3; ṽ−1
1 s3v2)Z(G = 0, B = 3; w̃−1

1 u3w2)
...

...

Z(G = 0, B = 3; ṽ−1
G−3sG−1vG−2)Z(G = 0, B = 3; w̃−1

G−3sG−1wG−2)

Z(G = 0, B = 3; ṽ−1
G−2sGsG+1)Z(G = 0, B = 3; w̃−1

G−2uGuG+1)
G+1
∏

i=1

δm+n(uitis
−1
i t−1

i )
G−2
∏

i=1

δm+n(v−1
i γiṽiγ

−1
i )

G−2
∏

i=1

δm+n(w−1
i ǫiw̃iǫ

−1
i ) (5.3)

5.2 Chiral form of complete 1
N

expansion for general G

The chiral partition function can also be written in a way to emphasize the construction

of the genus G surface by gluing pants diagrams

Z+
G =

∑

M

∑

si,ti,ui,vi,wi,ṽi,w̃i,γi,ǫi∈SM

Z+(G = 0, B = 3; s1s2v1)Z
+(G = 0, B = 3;u1u2w1)

Z+(G = 0, B = 3; ṽ−1
1 s3v2)Z

+(G = 0, B = 3; w̃−1
1 u3w2)

...
...

Z+(G = 0, B = 3; ṽ−1
G−3sG−1vG−2)Z

+(G = 0, B = 3; w̃−1
G−3sG−1wG−2)

Z+(G = 0, B = 3; ṽ−1
G−2sGsG+1)Z

+(G = 0, B = 3; w̃−1
G−2uGuG+1)

G+1
∏

i=1

δM (uitis
−1
i t−1

i )
G−2
∏

i=1

δM (v−1
i γiṽiγ

−1
i )

G−2
∏

i=1

δM (w−1
i ǫiw̃iǫ

−1
i ) (5.4)
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Figure 4: Genus G from gluing 2G − 2 copies of Σ(G = 0, B = 3)

To emphasize the similarity between the full partition function and the chiral one, we

write

ZG =
∑

M

∑

si,ti,ui,vi,wi,ṽi,w̃i,γi,ǫi∈SM

Z+(G = 0, B = 3; s1s2v1)Z
+(G = 0, B = 3;u1u2w1)

Z+(G = 0, B = 3; ṽ−1
1 s3v2)Z

+(G = 0, B = 3; w̃−1
1 u3w2)

...
...

Z+(G = 0, B = 3; ṽ−1
G−3sG−1vG−2)Z

+(G = 0, B = 3; w̃−1
G−3sG−1wG−2)

Z+(G = 0, B = 3; ṽ−1
G−2sGsG+1)Z

+(G = 0, B = 3; w̃−1
G−2uGuG+1)

G+1
∏

i=1

δM (uitis
−1
i t−1

i )

G−2
∏

i=1

δM (v−1
i γiṽiγ

−1
i )

G−2
∏

i=1

δM (w−1
i ǫiw̃iǫ

−1
i )

∑

H

(

M !

|H|

)2G−2 G+1
∏

i=1

δM (si1H)δM (ui1H)δM (ti1H)

G−2
∏

i=1

δM (vi1H)δM (ṽi1H)δM (wi1H)δM (w̃i1H)δM (γi1H)δM (ǫi1H) (5.5)

The sum over H is the sum over Sm×Sn subgroups, with 0 ≤ m,n ≤ M and m+n = M .

We have defined 1H ≡
∑

σ∈H σ. When H is restricted to be SM , i.e (m,n) = (0,M)

or (M, 0), we have the standard chiral partitions functions. The expression suggests an

interpretation within a topological string theory of holomorphic maps with target Σ(G),

of the complete 1
N

expansion of the 2DYM partition function, in terms of the insertion of
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an appropriate observable corresponding to

∑

H

G+1
∏

i=1

δM (si1H)δM (ui1H)δM (ti1H)

×

G−2
∏

i=1

δM (vi1H)δM (ṽi1H)δM (wi1H)δM (w̃i1H)δM (γi1H)δM (ǫi1H) (5.6)

Identifying such an obervable in terms of classes on the Hurwitz space of holomorphic

maps, or in terms of the pull-back of these classes to the moduli space of worldsheet

complex structures would be the next step in developing the holomorphic description of

the full 1
N

expansion of 2DYM. If the classes on Mg,n can be expressed in terms of the

Mumford-Morita classes with intersection numbers computed by 2D quantum gravity [25],

this could lead to new connections between 2DYM and integrable equations. This would

give a concrete way to explicitly compute the terms in the 1
N

expansion directly from

wordsheet topological string methods.

6. Summary and outlook

By developing results in [6] we have found an expression (2.8) for the coupled inverse Omega

factor Ω−1
m,n of [2] in terms of a projection of the chiral inverse Omega factor Ω−1

m+n. The

latter has a simple interpretation in terms of branch points. This has allowed us to write

the complete 1
N

expansion of the partition function of 2DYM theory, with SU(N) gauge

group, as an insertion of an observable in the chiral partition function (see (3.8) and (5.5)).

The chiral form of the complete 1
N

expansion uses a choice of markings which separate the

target space Σ(G) into components of Euler character −1. i.e 3-holed spheres or 1-holed

tori. The partition function does not depend on the choice of markings. The difference

between the chiral expansion and the complete one is simply in the choice of gluing factors

at the markings. The complete expansion has an additional sum over subgroups Sm×Sn of

SM where M = m+n is the degree of the map from worldsheet to target. The geometrical

interpretation of the coupled Ω−1
m,n factor involves worldsheets with double points which

can arise from collision of branch points. The expression in terms of the chiral Ω−1
m+n factor

allows a geometrical interpretation with smooth worldsheets Σ(g) without double points

mapping to the target space. In particular we have an equality of the Euler character of a

space of holomorphic maps from worldsheets which can have nodes and the Euler character

of a space of holomorphic maps from smooth worldsheets.

Several extensions of these results are worth investigating. Incorporating finite area

A or changing the gauge group from SU(N) to U(N) can be done trivially. The latter

involves an extra sum over a U(1) charge. The dimensions of irreps are unaffected by

tensoring with the U(1) representations, so there is no non-trivial modification. In the

bulk of this paper we have used SU(N) rather than U(N) because the main points about

the chiral reformulation can be made at zero area and zero theta parameter in the former

case. In the case of U(N) we have to include the area or the theta parameter to control the

infinite sum over U(1) irreps. The generalisation of the large N expansion of 2DYM for
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the gauge groups O(N) and Sp(N) is known [9, 10]. This expansion involves worldsheets

with nodes, and the additional feature of possible non-orientability. Is there a rewriting

of the Ω factors of O(N),Sp(N) which allows us to map the partition function to one

involving worldsheets that do not involve nodes ? In the U(N) or SU(N) theory, there are

non-perturbative sectors which have an interpretation of terms of splitting fermi seas [11].

These theories also admit q-deformations which have a string interpretation in terms of

strings with Calabi-Yau targets which are direct sums of line bundles over Σ(G) [12] (see

also subsequent work [13 – 15]). The chiral 1
N

(more precisely 1/[N ] where [N ] is a q-

number) expansion for these theories have been worked out in terms of Hecke algebras [16].

It would be interesting to work out the chiral formulation of the full expansion in the q-

deformed and non-perturbative sectors. An obvious question is to find how to express the

observable inserted in (3.8) (5.5) in terms of the balanced topological string proposed as

the worldsheet string for chiral 2DYM ([5, 17]). The chiral-anti-chiral split of 2D Yang

Mills has also been interpreted in terms of the OSV conjecture for black hole entropy. It

would be interesting to explore possible implications of our holomorphic reformulation for

2dYM in that context [18].

The result (2.8) has been found using Brauer algebras which have been useful in di-

agonalisation problems of the CFT-metric on gauge invariant Matrix operators in four

dimensional N = 4 SYM gauge theory. These diagonalisation problems have been use-

ful [19] in mapping gauge theory states to AdS-spacetime states such as 3-brane configu-

rations (giant gravitons). Brauer algebras arise in the case where we have both branes and

anti-branes [6]. The map Σ which has been crucial in developing formulae for projectors

in the Brauer algebra [6], is also used to map projectors in C(Sm+n) to Brauer elements

in [20]. The appearance of the same algebraic structures in describing strings in the string

theory dual of 2DYM and 3-branes in the string theory dual of 4DSYM suggests that the

geometrical lessons of 2DYM will also have consequences for 4DSYM.

We expect that the reformulation of the complete (coupled) expansion in terms of the

chiral theory can lead to a deeper mathematical understanding of the large N expansion

of 2DYM theory. We venture some speculative ideas along these lines. From a physical

perspective we want to understand, in generality, the relation between 2DYM for Σ(G)

and Matrix models such as the Kontsevich Matrix model [22] which can exhibit the rela-

tion with the geometry of the compactified moduli space of worldsheet complex structures

Mg,n. There are some early attempts in this direction [21]. Certain discrete counting

problems related to Hurwitz spaces for sphere target, some of which were considered in the

context of 2D Yang Mills [23], have been mapped to integrals over the compactified mod-

uli spaces of complex structures Mg,n [24] and results from 2D gravity [25] have allowed

explicit computations. In fact it is known the chiral 2DYM computes an Euler character

of Hurwitz spaces [5]. It should be possible to express this Euler character in terms of

integrals of cohomology classes over Mg,n. This should lead to a better understanding of

how to express the observables inserted in (5.5), which give the complete 1
N

expansion of

2DYM, in terms of classes on Hurwitz spaces and in turn on Mg,n. In line with other recent

mathematical developments related to A-model topological strings [26, 27], the construc-

tion of the appropriate classes on Hurwitz space and Mg,n should probably proceed by
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first introducing the more complicated compactification of stable maps for Gromov-Witten

theory with Σ(G) target space, and then introducing virtual classes whose integrals are

simpler. In such a scenario, the two moduli spaces of equal Euler character described in

section 4, have to be understood as the localization loci of virtual classes in the stable

compactification. Research on these avenues would lead to new connections between inte-

grable hierachies and the large N expansion of 2DYM. For the case of sphere target, the

topological σ-models are already known to be related to a matrix model and integrable

hierarchies [28], with conjectural relations for more general target [29]. An extension of

analogous results to define a Matrix Model of Euler characters of holomorphic maps related

to the balanced topological strings [5, 17] (and supplemented with the worldheet versions

of the observable (5.5) ) which generate the 1
N

expansion of 2DYM would set the stage for

a quantitative understanding of these strings for more general target spaces.
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A. Useful formulae

The projector used in section 2 is

pR =
dR

m!

∑

σ

χR(σ)σ (A.1)

The appearance of Π1 in large N expansions of 2DYM stems from

(

m!

dR

)2

=
∑

s,t∈Sm

χR(sts−1t−1)

dR
(A.2)

The delta function used extensively in 2DYM has a character expansion

1

n!

∑

R

dRχR(ρ) = δ(ρ) (A.3)

The relation between dimensions and the inverse Ω factor is

1

dimR
=

m!

Nm

χR(Ω−1
m )

d2
R

(A.4)

Useful formulae for manifolds with boundary are

tr(σU) =
∑

R

χR(σ)χR(U)

∫

dUχR(U)χS(U †) = δRS (A.5)
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B. Derivations for genus G

For any decomposition of genus G into pants and one-holed tori we can write the full

partition function in a way that reflects the choice of decomposition. Then going from

chiral to full theory involves inserting the sum over subgroups and the projections of all

the permutations using the symmetric projector of the subgroup.

We can write the genus G answer from [2]

ZG =
∑

m,n

N (m+n)(2−2G)

m!n!
δm,n(Ω2−2G

m,n ΠG
1 )

=
∑

m,n

N (m+n)(2−2G)

m!n!

∑

α1···αG∈Sm×Sn

δm,n((Ω−1
m,n)G−2

∏

i

αi)
G
∏

i=1

δm,n(Ω−1
m,nΠ1α

−1
i )

=
∑

m,n

N (m+n)(2−2G)

m!n!

∑

α1···αG∈Sm×Sn

G
∏

i=1

δm,n(Ω−1
m,nΠ1α

−1
i )

∑

β1···βG−3∈Sm×Sn

δm,n(Ω−1
m,nα1α2β1)δm,n(Ω−1

m,nβ−1
1 α3β2)

δm,n(Ω−1
m,nβ−1

2 α4β3) · · · δm,n(Ω−1
m,nβG−3αG−1αG)

=
∑

m,n

N (m+n)(2−2G)

m!n!

∑

α1···αG∈Sm×Sn

G
∏

i=1

δm+n(Ω−1
m+nΠ1α

−1
i )

∑

β1···βG−3∈Sm×Sn

δm+n(Ω−1
m+nα1α2β1)δm+n(Ω−1

m+nβ−1
1 α3β2)

δm+n(Ω−1
m+nβ−1

2 α4β3) · · · δm+n(Ω−1
m+nβG−3αG−1αG) (B.1)

After manipulating so that each delta functions contains a simgle power of Ω−1 we can

write in terms of the Ω−1
m+n leaving the δ to do the projection.

We can also re-write in terms of any decomposition of the genus G into 3-holed spheres,

by imitating steps analogous to (3.6)

ZG =
∑

m,n

N (2−2G)(m+n)

m!n!

∑

s1,t1···sG,tG∈Sm×Sn

δm,n

(

Ω2−2G
m,n s1t1s

−1
1 t−1

1 s2t2s
−1
2 t−1

2 · · · sGtGs−Gt−1
G

)

=
∑

m,n

N (2−2G)(m+n)

m!n!

∑

s1,t1···sG+1,tG+1∈Sm×Sn

δm,n(Ω1−G
m,n s1s2 · · · sG sG+1)

δm,n(Ω1−G
m,n t1s

−1
1 t−1

1 t2s
−1
2 t−1

2 · · · tGs−1
G t−1

G s−1
G+1)

=
∑

m,n

N (2−2G)(m+n)

(m!n!)2

∑

si,ti,ui∈Sm×Sn

δm,n(Ω1−G
m,n s1s2 · · · sGsG+1)δm,n(Ω1−G

m,n u1u2 · · · uGuG+1)

G+1
∏

i=1

δm,n(uitis
−1
i t−1

i )

=
∑

m,n

N (2−2G)(m+n)

(m!n!)2

∑

si,ti,ui

∑

v1,w1···vG−2,wG−2∈Sm×Sn

δm,n(Ω−1
m,ns1s2v1) δm,n(Ω−1

m,nu1u2w1)

δm,n(Ω−1
m,nv−1

1 s3v2) δm,n(Ω−1
m,nw−1

1 u3w2)
...

...
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δm,n(Ω−1
m,nv−1

G−3sG−1vG−2)δm,n(Ω−1
m,nw−1

G−3sG−1wG−2)

δm,n(Ω−1
m,nv−1

G−2sGsG+1)δm,n(Ω−1
m,nw−1

G−2uGuG+1)
G+1
∏

i=1

δm,n(uitis
−1
i t−1

i )

=
∑

m,n

∑

si,ti,ui,vi,wi,ṽi,w̃i,γi,ǫi∈Sm×Sn

N−(m+n)

(m!n!)
δm,n(Ω−1

m,ns1s2v1)
N−(m+n)

(m!n!)
δm,n(Ω−1

m,nu1u2w1)

N−(m+n)

(m!n!)
δm,n(Ω−1

m,nṽ−1
1 s3v2)

N−(m+n)

(m!n!)
δm,n(Ω−1

m,nw̃−1
1 u3w2)

...
...

N−(m+n)

(m!n!)
δm,n(Ω−1

m,nṽ−1
G−3sG−1vG−2)

N−(m+n)

(m!n!)
δm,n(Ω−1w̃−1

G−3sG−1wG−2)

N−(m+n)

(m!n!)
δm,n(Ω−1

m,nṽ−1
G−2sGsG+1)

N−(m+n)

(m!n!)
δm,n(Ω−1

m,nw̃−1
G−2uGuG+1)

G+1
∏

i=1

δm,n(uitis
−1
i t−1

i )

G−2
∏

i=1

δm,n(v−1
i γiṽiγ

−1
i )

G−2
∏

i=1

δm,n(w−1
i ǫiw̃iǫ

−1
i ) (B.2)

Now that all the Ω−1 factors are sitting in separate delta functions in Sm × Sn along

with permutations within that subgroup, we may obtain (5.2).

C. Omega factors

In this section, we show explicit forms of Ω−1
m+n and Ω−1

m,n for some examples. One way to

calculate Ω−1
m+n is to solve Ωm+nΩ−1

m+n = 1. Another useful way is to use

Ω−1
m+n =

Nm+n

((m + n)!)2

∑

T⊢(m+n)

d2
T

DimT
χT (σ)σ (C.1)

which was used in [6] to obtain the dual of Brauer algebra elements with respect to a

bilinear form.

When m + n = 3, the omega factor is given by

Ω3 = 1 +
1

N
T[2,1] +

1

N2
T[3] (C.2)

The indices written as subscripts of T denote the cycle lengths of the conjugacy class. The

inverse of this is calculated using the above formula as

Ω−1
3 =

N2

(N2 − 1)(N2 − 4)

(

N2 − 2 − NT[2,1] + 2T[3]

)

(C.3)

By projecting this to the subgroup S2 × S1, we get

Ω−1
3 |S2×S1

= Ω−1
2,1 =

N2

(N2 − 1)(N2 − 4)

(

N2 − 2 − Ns1

)

(C.4)

We can easily check Ω−1
2,1Ω2,1 = 1 using

Ω2,1 = 1 −
2

N2
+

1

N
s1 (C.5)
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Another example is the case of m + n = 4, where the inverse of the omega factor is

Ω−1
4 =

N2

(N2 − 1)(N2 − 4)(N2 − 9)
×
(

N4 − 8N2 + 6 − N(N2 − 4)T[2,12] + (2N2 − 3)T[3,1]

−5NT[4] + (N2 + 6)T[2,2]

)

(C.6)

In this case, we can consider two projections to S3 × S1 and S2 × S2, which give

Ω−1
4 |S3×S1

= Ω−1
3,1 =

N2

(N2 − 1)(N2 − 4)(N2 − 9)
×

×
(

N4 − 8N2 + 6 − N(N2 − 4)T[2,1] + (2N2 − 3)T[3]

)

(C.7)

and

Ω−1
4 |S2×S2

= Ω−1
2,2 =

N2

(N2 − 1)(N2 − 4)(N2 − 9)
×

×
(

N4 − 8N2 + 6 − N(N2 − 4)(s + s̄) + (N2 + 6)ss̄
)

(C.8)

These can also be checked using

Ω3,1 = 1 −
3

N2
+

1

N

(

1 −
1

N2

)

T[2,1] +
1

N2
T[3] (C.9)

and

Ω2,2 = 1 −
4

N2
+

2

N4
+

1

N
(s + s̄) +

1

N2

(

1 −
2

N2

)

ss̄ (C.10)

Here s is the transposition in the left S2 factor, while s̄ is the transposition in the right S2

factor.

According to (2.8) and the above explicit formulae, all the restrictions on the nature

of the double points in Ωm,n reviewed in section 4.1 are encoded in the inversion of Ωm+n

to give Ω−1
m+n. This uses the properties of group multiplication inside Sm+n followed by

projection to Sm × Sn. It is not a straightforward relation such as saying that the double

points of the coupled expansion follow from all those arising in the collision of branch

points as encoded in symmetric group multiplication. For example general products of

permutations can give nodes connecting different types of cycles. Consider multiplications

in S4 such as (132)(1234) = (1)(2)(34). The counting of branching numbers implies that

after such a collision there are two nodes degenerated at one point. Such nodes do not

arise the coupled expansion. The above multiplication does however enter the relation

between Ω−1
4 and Ω−1

2,2. If the reduction is to S{1,2} × S{3,4} then it seems we have tubes

connecting 2-cycles to 1-cycles. This not so. We can think of (1)(2)(34) as a product of

trivial permutation with the (1)(2)(34). We associate 1
N2 with the trivial permutation. In

other words in expanding Ω−1
m,n = (1+ Ω̃m,n)−1 the term corresponding to N−5(132)(1234)

in the expansion of Ω−1
4 comes from the (Ω̃m,n)2 and not from Ω̃m,n.
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D. Gluing manifolds with boundary

Gauge theory partition functions are defined as a function of the boundary holonomy U

which lives in the gauge group U(N). They can be calculated exactly. Consider, for

example, the case Σ(G = 1, B = 1).

Z(G = 1, B = 1;U) =
∑

R

1

dimR
χR(U) (D.1)

To get observables appropriate for a string interpretation in the chiral expansion we choose

a positive integer M and a conjugacy class T in SM .

Z+(G = 1, B = 1;T ) ≡

∫

dUZ+(U)
1

M !

∑

α∈T

∑

R

χR(α)χR(U †)

=
N−M

M !

∑

s,t∈SM

∑

α∈T

δM (Ω−1
M sts−1t−1α) (D.2)

The delta function is defined over the group algebra of SM . This can be interpreted as a sum

over covering spaces of Σ(G = 1, B = 1) subject to the constraints that the permutation

of the sheets upon going on a path round the boundary is in the conjugacy class T . After

expanding the Ω factors as in [5]

Z+(G = 1, B = 1;T ) =
N−M

M !

∞
∑

L=0

′
∑

σ1,...,σL∈SM

∑

s,t∈SM

∑

α∈T

(−1)L

×

(

1

N

)

PL
j=1

(M−Cσj
)

δM (σ1 · · · σLsts−1t−1α) (D.3)

The factor (−1)L is the Euler character of the L-dimensional configuration space of L

branch points on Σ(G = 1, B = 1), hence the interpretation as an Euler character of the

moduli space of branched covers. This is explained in detail in [5, 4]

In the non-chiral theory, we choose two integers m,n and a conjugacy class T in

Sm × Sn. and we multiply Z(U) with characters
∑

σ∈T χR⊗S(σ)χRS̄(U †).

Z(G = 1, B = 1;T ) =
∑

α∈T

Z(G = 1, B = 1;α)

=
∑

α∈T

N−m−n

m!n!

∑

s,t∈Sm×Sn

δm,n(Ω−1
m,nsts−1t−1α) (D.4)

The delta function is defined over the group algebra of Sm × Sn. Given the formula for

Ωm,n in (4.1) this can be interpreted in terms branched coverings from wordsheets made of

pairs of surfaces joined at double points. One component of the pair maps holomorphically,

the other maps anti-holomprphically. After expanding the Ωm,n factor we can interpret

Z(G = 1, B = 1;T ) as an Euler character of a moduli space of “coupled maps.” By using

an orientation reversal, the coupled maps are nothing but degenerated holomorphic maps.

The gluing of partition functions is done by integrating over the U(N) holonomy U

along a common boundary. This can be translated into a rule for how to glue the partition
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functions with boundary data in terms of symmetric groups. In the chiral theory, the

rule is to sum over all possible T for all M . We describe the gluing of two copies of

Σ(G = 1, B = 1) to get Σ(G = 2, B = 0)

Z+(G = 2) =
∑

M

∑

α1,β1∈SM

Z+(G = 1, α1)Z
+(G = 1, β−1

1 )

×
∑

γ∈SM

δM (α−1
1 γβ1γ

−1) (D.5)

We expect the gluing of boundary partition functions for two copies of ZG=0,B=3 to give

Z(G = 2) and indeed the following equality holds

Z+(G = 2) =
∑

M

∑

αi,βi∈SM

Z+(G = 0, B = 3;α1, α2, α3)Z
+(G = 0, B = 3;β−1

1 , β−1
2 , β−1

3 )

×

3
∏

i=1

∑

γi

δM (α−1
i γiβiγ

−1
i ) (D.6)

Analogous results for the non-chiral partition function are

Z(G = 2) =
∑

m,n

∑

α1,β1∈Sm×Sn

Z(G = 1, α1)Z(G = 1, β−1
1 )

×
∑

γ∈Sm×Sn

δm,n(α−1
1 γβ1γ

−1) (D.7)

and

Z(G = 2) =
∑

m,n

∑

αi,βi∈Sm×Sn

Z(G = 0, B = 3;α1, α2, α3)Z(G = 0, B = 3;β−1
1 , β−1

2 , β−1
3 )

×

3
∏

i=1

∑

γi∈Sm×Sn

δm,n(α−1
i γiβiγ

−1
i ) (D.8)
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